Chapter 20 Appendix D: Recommended material
General
Dienes Z. 2008. Understanding Psychology as a Science: An Introduction to Scientific and Statistical Inference. New York: Red Globe Press.
Ellenberg J, Ellenberg J. 2014. How not to be wrong: the hidden maths of everyday life. New York, New York: Penguin Books.
Foreman JW. 2014. Data smart: using data science to transform information into insight. Hoboken, New Jersey: John Wiley & Sons.
Gelman A, Hill J, Vehtari A. 2020. Regression and Other Stories. S.l.: Cambridge University Press.
Spiegelhalter D. 2019. The art of statistics: how to learn from data. New York: Basic Books, an imprint of Perseus Books, a subsidiary of Hachette Book Group.
Bayesian analysis
Kruschke JK. 2015. Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan. Boston: Academic Press.
Lambert B. 2018. A student’s guide to Bayesian statistics. Los Angeles: SAGE.
McElreath R. 2020. Statistical rethinking: a Bayesian course with examples in R and Stan. Boca Raton: Taylor and Francis, CRC Press.
Stanton JM. 2017. Reasoning with data: an introduction to traditional and Bayesian statistics using R. New York: The Guilford Press.
Predictive analysis and Machine Learning
James G, Witten D, Hastie T, Tibshirani R. 2017. An Introduction to Statistical Learning: with Applications in R. New York: Springer.
Kuhn M, Johnson K. 2018. Applied Predictive Modeling. New York: Springer.
Kuhn M, Johnson K. 2019. Feature Engineering and Selection: a Practical Approach for Predictive Models. Milton: CRC Press LLC.
Lantz B. 2019. Machine learning with R: expert techniques for predictive modeling.
Rhys HI. 2020. Machine Learning with R, the tidyverse, and mlr. Manning Publications.
Causal inference
Hernán MA, Robins J. 2019. Causal Inference. Boca Raton: Chapman & Hall/CRC.
Kleinberg S. 2015. Why: A Guide to Finding and Using Causes. Beijing; Boston: O’Reilly Media.
Pearl J, Mackenzie D. 2018. The Book of Why: The New Science of Cause and Effect. New York: Basic Books.
R Language and Visualization
Healy K. 2018. Data visualization: a practical introduction. Princeton, NJ: Princeton University Press.
Kabacoff R. 2015. R in action: data analysis and graphics with R. Shelter Island: Manning.
Matloff NS. 2011. The art of R programming: tour of statistical software design. San Francisco: No Starch Press.
Wickham H, Grolemund G. 2016. R for data science: import, tidy, transform, visualize, and model data. Sebastopol, CA: O’Reilly.
Wickham H. 2019. Advanced R, Second Edition. Boca Raton: Chapman and Hall/CRC.
Wilke C. 2019. Fundamentals of data visualization: a primer on making informative and compelling figures. Sebastopol, CA: O’Reilly Media.
Simulation and statistical inference
Carsey T, Harden J. 2013. Monte Carlo Simulation and Resampling Methods for Social Science. Los Angeles: Sage Publications, Inc.
Efron B, Hastie T. 2016. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. New York, NY: Cambridge University Press.
Online Courses
Hastie T, Tibshirani R. 2016. Statistical Learning. Available at https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about (accessed October 16, 2019).
Lakens D. 2017. Improving your statistical inferences. Available at https://www.coursera.org/learn/statistical-inferences (accessed October 16, 2019).
Lakens D. 2019. Improving your statistical questions. Available at https://www.coursera.org/learn/improving-statistical-questions (accessed October 16, 2019).