probe_profile
simulates the vertical jump profiling using vj_profile
over external_load
loads,
but estimate which parameter brings biggest change in the profile summary metric returned by profile_func
.
This is done by keeping all parameters at initial value, while changing only one parameter. This is then repeated for
all parameters. This way we can answer by changing what parameter for standardize change (change_ratio
)
yield biggest change in profile summary metric (e.g. jump height)
probe_profile( mass = 75, push_off_distance = 0.4, max_force = 3000, max_velocity = 4, time_to_max_activation = 0.3, change_ratio = seq(0.9, 1.1, length.out = 3), aggregate = "raw", external_load = c(-40, -20, 0, 20, 40, 60, 80, 100), profile_func = get_all_profiles, ... )
mass | Numeric value. Initial parameter value to be changed using |
---|---|
push_off_distance | Numeric value. Initial parameter value to be changed using |
max_force | Numeric value. Initial parameter value to be changed using |
max_velocity | Numeric value. Initial parameter value to be changed using |
time_to_max_activation | Numeric value. Initial parameter value to be changed using |
change_ratio | Numeric vector indicating probing change ratios |
aggregate | How should |
external_load | Numeric vector. Default is |
profile_func | Profiling function. Default is |
... | Extra argument forwarded to |
Probing data frame
require(tidyverse) # You call also use get get_all_samozino_profiles() function in the profile_func parameter profile_probe_data <- probe_profile( mass = 75, max_force = 3000, max_velocity = 3, time_to_max_activation = 0.3, time_step = 0.001, external_load = c(-40, -20, 0, 20, 40, 60, 80, 100), profile_func = get_all_profiles # Can also use get_all_samozino_profiles ) plot_data <- gather(profile_probe_data, key = "variable", value = "value", -(1:8)) %>% filter(variable %in% c( "profile_mean_FV.F0", "profile_mean_FV.V0", "profile_mean_FV.Pmax", "profile_mean_FV.Sfv", "profile_mean_power.Pmax", "profile_mean_power.Pmax_location", "profile_mean_power.F0_perc" )) ggplot(plot_data, aes(x = change_ratio, y = value, color = probing)) + theme_minimal() + geom_line() + facet_wrap(~variable, scales = "free_y") + xlab("Normalized parameter change") + ylab(NULL)# ----------------------------------- # When probing using get_FV_profile or get_power_profile use the following power_probe_data <- probe_profile( mass = 75, max_force = 3000, max_velocity = 3, time_to_max_activation = 0.3, time_step = 0.001, external_load = c(-40, -20, 0, 20, 40, 60, 80, 100), profile_func = function(...) list(list = get_power_profile(...)) )