validity_analysis represents a wrapper function for the bmbstats function. validity_analysis runs the bootstrap validity analysis of the data data frame using estimator_function to return the estimators

validity_analysis(
  data,
  criterion,
  practical,
  SESOI_lower = SESOI_lower_validity_func,
  SESOI_upper = SESOI_upper_validity_func,
  estimator_function = validity_estimators,
  control = model_control(),
  na.rm = FALSE
)

Arguments

data

Data frame

criterion

Character vector indicating column name in the data

practical

Character vector indicating column name(s) in the data

SESOI_lower

Function or numeric scalar. Default is SESOI_lower_validity_func

SESOI_upper

Function or numeric scalar. Default is SESOI_upper_validity_func

estimator_function

Function for providing validity estimators. Default is validity_estimators

control

Control object returned from model_control function. Use boot_type, boot_samples, boot_strata, and confidence to setup bootstrap.

na.rm

Should NAs be removed? Default is FALSE

Value

Object of class bmbstats

Examples

data("agreement_data") val_analysis <- validity_analysis( data = agreement_data, criterion = "Criterion_score.trial1", practical = "Practical_score.trial1", control = model_control( boot_type = "perc", boot_samples = 1000, seed = 1667 ) )
#> Bootstraping: 1000 resamples
#> Calculating confidence intervals...
#> Done!
val_analysis
#> Bootstrap with 1000 resamples and 95% perc confidence intervals. #> #> estimator value lower upper #> SESOI lower -1.0846145 -1.3126039 -0.7649283 #> SESOI upper 1.0846145 0.7649283 1.3126039 #> SESOI range 2.1692290 1.5298567 2.6252079 #> Intercept -3.9394072 -7.7384917 0.6781176 #> Slope 0.9494885 0.8613078 1.0270365 #> RSE 0.8760378 0.6186607 1.0160992 #> Pearson's r 0.9875619 0.9766460 0.9941832 #> R Squared 0.9752786 0.9538374 0.9884002 #> SESOI to RSE 2.4761819 1.8120685 3.6148831 #> PPER 0.7692369 0.6237352 0.9134460 #> SDC 1.8335682 1.2948716 2.1267200
plot(val_analysis)