This is the "core" function of the bmbstats
package.
It performs bootstrap on the data
using provided estimator_function
,
SESOI_lower_function
, and SESOI_upper_function
. Used in other functions ("wrappers")
bmbstats( data, SESOI_lower_function = function(data, na.rm, init_boot) { return(0) }, SESOI_upper_function = function(data, na.rm, init_boot) { return(0) }, estimator_function = function(data, SESOI_lower, SESOI_upper, na.rm, init_boot) { return(0) }, control = model_control(), na.rm = FALSE )
data | Data frame |
---|---|
SESOI_lower_function | Function to estimate SESOI_lower within bootstrap loop.
Default functions is |
SESOI_upper_function | Function to estimate SESOI_upper within bootstrap loop.
Default functions is |
estimator_function | Function to be used within the bootstrap loop to provide a list
or named numeric vector of parameters.
Default is |
control | Control object returned from |
na.rm | Should missing values be removed? Default is |
A bmbstats
object
bmbstats(iris, SESOI_lower_function = function(data, na.rm, init_boot) { sd(data$Sepal.Length) * -0.2 }, SESOI_upper_function = function(data, na.rm, init_boot) { sd(data$Sepal.Length) * 0.2 }, estimator_function = function(data, SESOI_lower, SESOI_upper, na.rm, init_boot) { list(mean = mean(data$Sepal.Length), SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper) }, control = model_control(boot_type = "perc", boot_samples = 50) )#>#>#>#> Bootstrap with 50 resamples and 95% perc confidence intervals. #> #> estimator value lower upper #> mean 5.8433333 5.6959344 6.0118238 #> SESOI_lower -0.1656132 -0.1855872 -0.1433273 #> SESOI_upper 0.1656132 0.1433273 0.1855872