validity_estimators provides validity estimators using the simple linear regression model, where criterion is the outcome variable, and practical is the predictor.

validity_estimators(
  data,
  criterion,
  practical,
  SESOI_lower = 0,
  SESOI_upper = 0,
  na.rm = FALSE
)

Arguments

data

Data frame

criterion

Character vector indicating column name in the data

practical

Character vector indicating column name in the data

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

na.rm

Should NAs be removed? Default is FALSE

Value

Named vector with validity estimators

Examples

data("agreement_data") validity_estimators( data = agreement_data, criterion = "Criterion_score.trial1", practical = "Practical_score.trial1" )
#> SESOI lower SESOI upper SESOI range Intercept Slope RSE #> 0.0000000 0.0000000 0.0000000 -3.9394072 0.9494885 0.8760378 #> Pearson's r R Squared SESOI to RSE PPER SDC #> 0.9875619 0.9752786 0.0000000 0.0000000 1.8335682