Estimate relationship between reps and weight using the non-linear quantile regression
Source:R/estimate-quantile-functions.R
estimate_functions_quantile.Rd
These functions provide estimate 1RM and parameter values using the quantile regression. By default,
target variable is the reps performed, while the predictors is the perc_1RM
or
weight
. To reverse this, use the reverse = TRUE
argument
Usage
estimate_k_quantile(
perc_1RM,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_k_generic_1RM_quantile(
weight,
reps,
eRIR = 0,
k = 0.0333,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_k_1RM_quantile(
weight,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_kmod_quantile(
perc_1RM,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_kmod_1RM_quantile(
weight,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_klin_quantile(
perc_1RM,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
estimate_klin_1RM_quantile(
weight,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0),
...
)
Arguments
- perc_1RM
%1RM
- reps
Number of repetitions done
- eRIR
Subjective estimation of reps-in-reserve (eRIR)
- tau
Vector of quantiles to be estimated. Default is 0.5
- reverse
Logical, default is
FALSE
. Should reps be used as predictor instead as a target?- control
Control object for the
nlrq
function. Default is:quantreg::nlrq.control(maxiter = 10^4, InitialStepSize = 0)
- ...
Forwarded to
nlrq
function- weight
Weight used
- k
Value for the generic Epley's equation, which is by default equal to 0.0333
Value
nlrq
object
Functions
estimate_k_quantile()
: Estimate the parameterk
in the Epley's equationestimate_k_generic_1RM_quantile()
: Provides the model with generick
parameter, as well as estimated1RM
. This is a novel estimation function that uses the absolute weightsestimate_k_1RM_quantile()
: Estimate the parameterk
in the Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weightsestimate_kmod_quantile()
: Estimate the parameterkmod
in the modified Epley's equationestimate_kmod_1RM_quantile()
: Estimate the parameterkmod
in the modified Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weightsestimate_klin_quantile()
: Estimate the parameterklin
in the Linear/Brzycki equationestimate_klin_1RM_quantile()
: Estimate the parameterklin
in the Linear/Brzycki equation, as well as1RM
. This is a novel estimation function that uses the absolute weights
Examples
# ---------------------------------------------------------
# Epley's model
m1 <- estimate_k_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)
)
coef(m1)
#> k
#> 0.04285747
# ---------------------------------------------------------
# Epley's model that also estimates 1RM
m1 <- estimate_k_generic_1RM_quantile(
weight = c(70, 110, 140),
reps = c(10, 5, 3)
)
coef(m1)
#> 0RM
#> 128.315
# ---------------------------------------------------------
# Epley's model that also estimates 1RM
m1 <- estimate_k_1RM_quantile(
weight = c(70, 110, 140),
reps = c(10, 5, 3)
)
coef(m1)
#> k 0RM
#> 0.2499988 245.0003205
# ---------------------------------------------------------
# Modified Epley's model
m1 <- estimate_kmod_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)
)
coef(m1)
#> kmod
#> 0.04762194
# ---------------------------------------------------------
# Modified Epley's model that also estimates 1RM
m1 <- estimate_kmod_1RM_quantile(
weight = c(70, 110, 140),
reps = c(10, 5, 3)
)
coef(m1)
#> kmod 1RM
#> 0.1999983 196.0002286
# ---------------------------------------------------------
# Linear/Brzycki model
m1 <- estimate_klin_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)
)
coef(m1)
#> klin
#> 25.51547
# ---------------------------------------------------------
# Linear/Brzycki model thal also estimates 1RM
m1 <- estimate_klin_1RM_quantile(
weight = c(70, 110, 140),
reps = c(10, 5, 3)
)
coef(m1)
#> klin 1RM
#> 16 160