Estimate relationship between reps and weight using the non-linear mixed-effects regression
Source:R/estimate-mixed-functions.R
estimate_functions_mixed.Rd
These functions provide estimated 1RM and parameter values using the mixed-effect regression. By default,
target variable is the reps performed, while the predictor is the perc_1RM
or
weight
. To reverse this, use the reverse = TRUE
argument
Usage
estimate_k_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_k_generic_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
k = 0.0333,
reverse = FALSE,
random = zeroRM ~ 1,
...
)
estimate_k_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = k + zeroRM ~ 1,
...
)
estimate_kmod_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_kmod_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = kmod + oneRM ~ 1,
...
)
estimate_klin_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_klin_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = klin + oneRM ~ 1,
...
)
Arguments
- athlete
Athlete identifier
- perc_1RM
%1RM
- reps
Number of repetitions done
- eRIR
Subjective estimation of reps-in-reserve (eRIR)
- reverse
Logical, default is
FALSE
. Should reps be used as predictor instead as a target?- ...
Forwarded to
nlme
function- weight
Weight used
- k
Value for the generic Epley's equation, which is by default equal to 0.0333
- random
Random parameter forwarded to
nlme
function. Default isk + zeroRM ~ 1
for,estimate_k_mixed
function, ork + oneRM ~ 1
forestimate_kmod_mixed
andestimate_klin_mixed
functions
Value
nlme
object
Functions
estimate_k_mixed()
: Estimate the parameterk
in the Epley's equationestimate_k_generic_1RM_mixed()
: Provides the model with generick
parameter, as well as estimated1RM
. This is a novel estimation function that uses the absolute weightsestimate_k_1RM_mixed()
: Estimate the parameterk
in the Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weightsestimate_kmod_mixed()
: Estimate the parameterkmod
in the Modified Epley's equationestimate_kmod_1RM_mixed()
: Estimate the parameterkmod
in the Modified Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weightsestimate_klin_mixed()
: Estimate the parameterklin
in the Linear/Brzycki's equationestimate_klin_1RM_mixed()
: Estimate the parameterklin
in the Linear/Brzycki equation, as well as1RM
. This is a novel estimation function that uses the absolute weights
Examples
# ---------------------------------------------------------
# Epley's model
m1 <- estimate_k_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
#> k
#> Athlete A 0.01937865
#> Athlete B 0.03403605
#> Athlete C 0.06747237
#> Athlete D 0.02754989
#> Athlete E 0.04001677
#> Athlete F 0.02442086
#> Athlete G 0.03584091
#> Athlete H 0.02952992
#> Athlete I 0.02172886
#> Athlete J 0.04741195
#> Athlete K 0.05844494
#> Athlete L 0.03987504
# ---------------------------------------------------------
# Generic Epley's model that also estimates 1RM
m1 <- estimate_k_generic_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
#> zeroRM
#> Athlete A 115.60573
#> Athlete B 94.61033
#> Athlete C 106.24996
#> Athlete D 110.00999
#> Athlete E 106.53626
#> Athlete F 97.34956
#> Athlete G 100.87702
#> Athlete H 133.10815
#> Athlete I 119.93968
#> Athlete J 86.68878
#> Athlete K 93.39298
#> Athlete L 133.96571
# ---------------------------------------------------------
# Epley's model that also estimates 1RM
m1 <- estimate_k_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
coef(m1)
#> k zeroRM
#> Athlete A 0.02009568 100.90930
#> Athlete B 0.03190396 93.57043
#> Athlete C 0.05145831 112.78563
#> Athlete D 0.02931850 106.70531
#> Athlete E 0.04598452 114.11875
#> Athlete F 0.02445762 90.03293
#> Athlete G 0.03320945 100.69127
#> Athlete H 0.03081954 131.42121
#> Athlete I 0.02224391 108.13537
#> Athlete J 0.04190882 89.90772
#> Athlete K 0.05472608 101.01473
#> Athlete L 0.03821828 138.52861
# ---------------------------------------------------------
# Modifed Epley's model
m1 <- estimate_kmod_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
#> kmod
#> Athlete A 0.02061064
#> Athlete B 0.03816219
#> Athlete C 0.07955734
#> Athlete D 0.03001988
#> Athlete E 0.04559265
#> Athlete F 0.02638650
#> Athlete G 0.04044088
#> Athlete H 0.03240645
#> Athlete I 0.02325264
#> Athlete J 0.05521785
#> Athlete K 0.06915300
#> Athlete L 0.04531026
# ---------------------------------------------------------
# Modified Epley's model that also estimates 1RM
m1 <- estimate_kmod_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
coef(m1)
#> kmod oneRM
#> Athlete A 0.03015293 109.90580
#> Athlete B 0.03302727 91.99509
#> Athlete C 0.03135532 102.41449
#> Athlete D 0.03086472 105.47098
#> Athlete E 0.03133872 102.51785
#> Athlete F 0.03261368 94.57204
#> Athlete G 0.03213297 97.56802
#> Athlete H 0.02771251 125.11427
#> Athlete I 0.02956090 113.59524
#> Athlete J 0.03421882 84.57016
#> Athlete K 0.03325593 90.57077
#> Athlete L 0.02747214 126.61255
# ---------------------------------------------------------
# Linear/Brzycki model
m1 <- estimate_klin_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
#> klin
#> Athlete A 64.11011
#> Athlete B 35.11002
#> Athlete C 16.22552
#> Athlete D 45.24156
#> Athlete E 30.05447
#> Athlete F 50.70299
#> Athlete G 33.20719
#> Athlete H 41.90200
#> Athlete I 57.35190
#> Athlete J 24.65495
#> Athlete K 19.43184
#> Athlete L 30.18074
# ---------------------------------------------------------
# Linear/Brzycki model that also estimates 1RM
m1 <- estimate_klin_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
coef(m1)
#> klin oneRM
#> Athlete A 75.15769 96.19463
#> Athlete B 45.44975 88.91455
#> Athlete C 25.33309 107.11406
#> Athlete D 53.32681 100.49170
#> Athlete E 33.89090 106.06520
#> Athlete F 62.45929 85.33938
#> Athlete G 43.19576 95.83903
#> Athlete H 50.16078 123.79762
#> Athlete I 67.24280 103.20196
#> Athlete J 34.37574 84.98052
#> Athlete K 24.84090 95.45042
#> Athlete L 39.44231 130.14431