Skip to contents

This function create simple example using progression_table

Usage

create_example(
  progression_table,
  reps = c(3, 5, 10),
  volume = c("intensive", "normal", "extensive"),
  type = c("grinding", "ballistic"),
  ...
)

Arguments

progression_table

Progression table function

reps

Numeric vector. Default is c(3, 5, 10)

volume

Character vector. Default is c("intensive", "normal", "extensive")

type

Character vector. Type of max rep table. Options are grinding (Default) and ballistic

...

Extra arguments forwarded to progression_table

Value

Data frame with the following structure

type

Type of the set and rep scheme

reps

Number of reps performed

volume

Volume type of the set and rep scheme

Step 1

First progression step %1RM

Step 2

Second progression step %1RM

Step 3

Third progression step %1RM

Step 4

Fourth progression step %1RM

Step 2-1 Diff

Difference in %1RM between second and first progression step

Step 3-2 Diff

Difference in %1RM between third and second progression step

Step 4-3 Diff

Difference in %1RM between fourth and third progression step

Examples

create_example(progression_RIR)
#> # A tibble: 18 × 10
#>    type       reps volume    `Step 1` `Step 2` `Step 3` `Step 4` `Step 2-1 Diff`
#>    <chr>     <dbl> <chr>        <dbl>    <dbl>    <dbl>    <dbl>           <dbl>
#>  1 grinding      3 intensive     83.3     85.7     88.2     90.9            2.38
#>  2 grinding      3 normal        81.1     83.3     85.7     88.2            2.25
#>  3 grinding      3 extensive     79.0     81.1     83.3     85.7            2.13
#>  4 grinding      5 intensive     79.0     81.1     83.3     85.7            2.13
#>  5 grinding      5 normal        76.9     79.0     81.1     83.3            2.02
#>  6 grinding      5 extensive     75.0     76.9     79.0     81.1            1.92
#>  7 grinding     10 intensive     69.8     71.4     73.2     75.0            1.66
#>  8 grinding     10 normal        68.2     69.8     71.4     73.2            1.59
#>  9 grinding     10 extensive     66.7     68.2     69.8     71.4            1.51
#> 10 ballistic     3 intensive     71.4     75.0     79.0     83.3            3.57
#> 11 ballistic     3 normal        68.2     71.4     75.0     79.0            3.25
#> 12 ballistic     3 extensive     65.2     68.2     71.4     75.0            2.96
#> 13 ballistic     5 intensive     65.2     68.2     71.4     75.0            2.96
#> 14 ballistic     5 normal        62.5     65.2     68.2     71.4            2.72
#> 15 ballistic     5 extensive     60.0     62.5     65.2     68.2            2.50
#> 16 ballistic    10 intensive     53.6     55.6     57.7     60.0            1.98
#> 17 ballistic    10 normal        51.7     53.6     55.6     57.7            1.85
#> 18 ballistic    10 extensive     50.0     51.7     53.6     55.6            1.72
#> # ℹ 2 more variables: `Step 3-2 Diff` <dbl>, `Step 4-3 Diff` <dbl>

# Create example using specific reps-max table and k value
create_example(
  progression_RIR,
  max_perc_1RM_func = max_perc_1RM_modified_epley,
  kmod = 0.0388
)
#> # A tibble: 18 × 10
#>    type       reps volume    `Step 1` `Step 2` `Step 3` `Step 4` `Step 2-1 Diff`
#>    <chr>     <dbl> <chr>        <dbl>    <dbl>    <dbl>    <dbl>           <dbl>
#>  1 grinding      3 intensive     83.8     86.6     89.6     92.8            2.81
#>  2 grinding      3 normal        81.1     83.8     86.6     89.6            2.64
#>  3 grinding      3 extensive     78.6     81.1     83.8     86.6            2.48
#>  4 grinding      5 intensive     78.6     81.1     83.8     86.6            2.48
#>  5 grinding      5 normal        76.3     78.6     81.1     83.8            2.33
#>  6 grinding      5 extensive     74.1     76.3     78.6     81.1            2.19
#>  7 grinding     10 intensive     68.2     70.1     72.0     74.1            1.86
#>  8 grinding     10 normal        66.5     68.2     70.1     72.0            1.76
#>  9 grinding     10 extensive     64.8     66.5     68.2     70.1            1.67
#> 10 ballistic     3 intensive     70.1     74.1     78.6     83.8            4.03
#> 11 ballistic     3 normal        66.5     70.1     74.1     78.6            3.62
#> 12 ballistic     3 extensive     63.2     66.5     70.1     74.1            3.26
#> 13 ballistic     5 intensive     63.2     66.5     70.1     74.1            3.26
#> 14 ballistic     5 normal        60.3     63.2     66.5     70.1            2.96
#> 15 ballistic     5 extensive     57.6     60.3     63.2     66.5            2.69
#> 16 ballistic    10 intensive     50.8     52.8     55.1     57.6            2.08
#> 17 ballistic    10 normal        48.8     50.8     52.8     55.1            1.92
#> 18 ballistic    10 extensive     47.1     48.8     50.8     52.8            1.78
#> # ℹ 2 more variables: `Step 3-2 Diff` <dbl>, `Step 4-3 Diff` <dbl>