Skip to contents

Family of functions to adjust %1RM

Usage

adj_perc_1RM_RIR(
  reps,
  adjustment = 0,
  mfactor = 1,
  max_perc_1RM_func = max_perc_1RM_epley,
  ...
)

adj_perc_1RM_DI(
  reps,
  adjustment = 0,
  mfactor = 1,
  max_perc_1RM_func = max_perc_1RM_epley,
  ...
)

adj_perc_1RM_rel_int(
  reps,
  adjustment = 1,
  mfactor = 1,
  max_perc_1RM_func = max_perc_1RM_epley,
  ...
)

adj_perc_1RM_perc_MR(
  reps,
  adjustment = 1,
  mfactor = 1,
  max_perc_1RM_func = max_perc_1RM_epley,
  ...
)

Arguments

reps

Numeric vector. Number of repetition to be performed

adjustment

Numeric vector. Adjustment to be implemented

mfactor

Numeric vector. Default is 1 (i.e., no adjustment). Use mfactor = 2 to generate ballistic adjustment and tables

max_perc_1RM_func

Max %1RM function to be used. Default is max_perc_1RM_epley

...

Forwarded to max_perc_1RM_func. Usually the parameter value. For example klin = 36 when using max_perc_1RM_linear as max_perc_1RM_func function

Value

Numeric vector. Predicted perc 1RM

Functions

  • adj_perc_1RM_RIR(): Adjust max %1RM using the Reps In Reserve (RIR) approach

  • adj_perc_1RM_DI(): Adjust max %1RM using the Deducted Intensity (DI) approach. This approach simple deducts adjustment from estimated %1RM

  • adj_perc_1RM_rel_int(): Adjust max perc 1RM using the Relative Intensity (RelInt) approach. This approach simple multiplies estimated perc 1RM with adjustment

  • adj_perc_1RM_perc_MR(): Adjust max perc 1RM using the %Max Reps (%MR) approach. This approach simple divides target reps with adjustment

Examples

# ------------------------------------------
# Adjustment using Reps In Reserve (RIR)
adj_perc_1RM_RIR(5)
#> [1] 0.8572653

# Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_RIR(5, mfactor = 2)
#> [1] 0.7501875

# Use 2 reps in reserve
adj_perc_1RM_RIR(5, adjustment = 2)
#> [1] 0.8109642

# Use Linear model
adj_perc_1RM_RIR(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 2)
#> [1] 0.8181818

# Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_RIR(
  5,
  max_perc_1RM_func = max_perc_1RM_modified_epley,
  adjustment = 2,
  kmod = 0.06
)
#> [1] 0.7352941
# ------------------------------------------
# Adjustment using Deducted Intensity (DI)
adj_perc_1RM_DI(5)
#> [1] 0.8572653

# Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_DI(5, mfactor = 2)
#> [1] 0.7501875

# Use 10 perc deducted intensity
adj_perc_1RM_DI(5, adjustment = -0.1)
#> [1] 0.7572653

# Use Linear model
adj_perc_1RM_DI(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = -0.1)
#> [1] 0.7787879

# Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_DI(
  5,
  max_perc_1RM_func = max_perc_1RM_modified_epley,
  adjustment = -0.1,
  kmod = 0.06
)
#> [1] 0.7064516
# ------------------------------------------
# Adjustment using Relative Intensity (RelInt)
adj_perc_1RM_rel_int(5)
#> [1] 0.8572653

# Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_rel_int(5, mfactor = 2)
#> [1] 0.7501875

# Use 90 perc  relative intensity
adj_perc_1RM_rel_int(5, adjustment = 0.9)
#> [1] 0.7715388

# Use Linear model
adj_perc_1RM_rel_int(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 0.9)
#> [1] 0.7909091

# Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_rel_int(
  5,
  max_perc_1RM_func = max_perc_1RM_modified_epley,
  adjustment = 0.9,
  kmod = 0.06
)
#> [1] 0.7258065
# ------------------------------------------
# Adjustment using % max reps (%MR)
adj_perc_1RM_perc_MR(5)
#> [1] 0.8572653

# Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_perc_MR(5, mfactor = 2)
#> [1] 0.7501875

# Use 70 perc max reps
adj_perc_1RM_perc_MR(5, adjustment = 0.7)
#> [1] 0.8078477

# Use Linear model
adj_perc_1RM_perc_MR(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 0.7)
#> [1] 0.8138528

# Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_perc_MR(
  5,
  max_perc_1RM_func = max_perc_1RM_modified_epley,
  adjustment = 0.7,
  kmod = 0.06
)
#> [1] 0.7306889