reliability_analysis
represents a wrapper function for the bmbstats
function.
reliability_analysis
runs the bootstrap reliability analysis of the data
data frame using
estimator_function
to return the estimators
reliability_analysis( data, trial1, trial2, SESOI_lower = SESOI_lower_reliability_func, SESOI_upper = SESOI_upper_reliability_func, estimator_function = reliability_estimators, control = model_control(), na.rm = FALSE )
data | Data frame |
---|---|
trial1 | Character vector indicating column name in the |
trial2 | Character vector indicating column name(s) in the |
SESOI_lower | Function or numeric scalar. Default is |
SESOI_upper | Function or numeric scalar. Default is |
estimator_function | Function for providing reliability estimators. Default is |
control | Control object returned from |
na.rm | Should NAs be removed? Default is |
Object of class bmbstats
data("agreement_data") rel_analysis <- reliability_analysis( data = agreement_data, trial1 = "Practical_score.trial1", trial2 = "Practical_score.trial2", control = model_control( boot_type = "perc", boot_samples = 1000, seed = 1667 ) )#>#>#>rel_analysis#> Bootstrap with 1000 resamples and 95% perc confidence intervals. #> #> estimator value lower upper #> SESOI lower -1.1802122 -1.4096624 -0.8515401 #> SESOI upper 1.1802122 0.8515401 1.4096624 #> SESOI range 2.3604244 1.7030803 2.8193248 #> Intercept 4.3847186 -1.9395860 8.7328415 #> Slope 0.9170754 0.8265514 1.0405939 #> RSE 1.3749629 0.8584588 1.7824954 #> Pearson's r 0.9718531 0.9425451 0.9890019 #> R Squared 0.9444984 0.8883912 0.9781248 #> SESOI to RSE 1.7167185 1.1541459 2.7827378 #> PPER 0.5986068 0.4293347 0.8198081 #> TE 0.9722456 0.6070220 1.2604146 #> SDC 2.8778305 1.7967749 3.7308058plot(rel_analysis)