Predicts using predict function and supplied model

generic_predict(
  model,
  predictors,
  SESOI_lower = 0,
  SESOI_upper = 0,
  na.rm = FALSE
)

Arguments

model

Model object

predictors

Data frame

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

na.rm

Should NAs be removed? Default is FALSE

Examples

m1 <- lm_model( predictors = iris[2:3], outcome = iris[[1]] ) generic_predict(m1)
#> 1 2 3 4 5 6 7 8 #> 5.006900 4.405440 4.589118 4.582638 5.127192 5.658785 4.886608 4.943514 #> 9 10 11 12 13 14 15 16 #> 4.285148 4.582638 5.304390 5.000420 4.405440 4.234723 5.494548 6.146434 #> 17 18 19 20 21 22 23 24 #> 5.431162 5.006900 5.538493 5.424682 5.057325 5.304390 4.899569 4.937034 #> 25 26 27 28 29 30 31 32 #> 5.171137 4.519252 5.000420 5.063806 4.886608 4.759836 4.639544 4.943514 #> 33 34 35 36 37 38 39 40 #> 5.785558 5.848944 4.582638 4.532213 4.949994 5.127192 4.348534 4.943514 #> 41 42 43 44 45 46 47 48 #> 4.949994 3.506491 4.589118 5.120712 5.652305 4.405440 5.481588 4.646024 #> 49 50 51 52 53 54 55 56 #> 5.304390 4.766316 6.523915 6.410104 6.517435 5.042947 5.985842 5.928936 #> 57 58 59 60 61 62 63 64 #> 6.644207 4.764898 6.106133 5.467209 4.397542 5.998802 4.922655 6.163039 #> 65 66 67 68 69 70 71 72 #> 5.537076 6.232906 6.169520 5.581021 5.207184 5.226625 6.580821 5.644407 #> 73 74 75 76 77 78 79 80 #> 5.795683 6.042747 5.935416 6.112614 6.099653 6.454049 6.049228 5.119294 #> 81 82 83 84 85 86 87 88 #> 5.049427 4.992522 5.467209 6.150079 6.169520 6.650688 6.403623 5.270570 #> 89 90 91 92 93 94 95 96 #> 5.941897 5.283531 5.631446 6.226425 5.403823 4.644606 5.637926 5.998802 #> 97 98 99 100 101 102 103 104 #> 5.878510 5.935416 4.714473 5.701313 7.383982 6.150079 6.966201 6.675191 #> 105 106 107 108 109 110 111 112 #> 6.909295 7.364541 5.568060 7.073532 6.307835 7.801764 6.751538 6.263890 #> 113 114 115 116 117 118 119 120 #> 6.738578 5.852589 6.270370 6.865350 6.738578 8.383783 7.054091 5.491713 #> 121 122 123 124 125 126 127 128 #> 7.092973 6.156559 7.180863 6.036267 7.213265 7.263690 6.099653 6.397143 #> 129 130 131 132 133 134 135 136 #> 6.554899 6.909295 6.839428 8.213065 6.554899 6.270370 6.314315 7.080012 #> 137 138 139 140 141 142 143 144 #> 7.276651 6.858870 6.340237 6.801964 6.915775 6.631246 6.150079 7.206785 #> 145 146 147 148 149 150 #> 7.213265 6.567860 5.852589 6.567860 7.162840 6.510954