This model uses all predictors to model the outcome with lm function

lm_model(
  predictors,
  outcome,
  SESOI_lower = 0,
  SESOI_upper = 0,
  na.rm = FALSE,
  ...
)

Arguments

predictors

Data frame

outcome

Vector

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

na.rm

Should NAs be removed? Default is FALSE

...

Extra arguments forwarded to lm function

Value

model object

Examples

lm_model( predictors = iris[2:3], outcome = iris[[1]] )
#> #> Call: #> stats::lm(formula = .outcome ~ . - 1, data = data) #> #> Coefficients: #> Sepal.Width Petal.Length #> 1.2029 0.5691 #>