R/describe_relationship.R
describe_relationship.Rd
describe_relationship
provides numerous descriptive estimators and bootstrap confidence intervals for
relationship between paired predictor
and outcome
groups. describe_relationship
function is a "wrapper"
for bmbstats
function.
describe_relationship( predictor, outcome, SESOI_lower = SESOI_lower_dependent_func, SESOI_upper = SESOI_upper_dependent_func, estimator_function = relationship_lm_estimators, control = model_control(), na.rm = FALSE )
predictor | Numeric vector |
---|---|
outcome | Vector |
SESOI_lower | Lower smallest effect size of interest threshold |
SESOI_upper | Upper smallest effect size of interest threshold |
estimator_function | Function that takes |
control | Control object returned from |
na.rm | Should NAs be removed? Default is |
data("yoyo_mas_data") predictor <- yoyo_mas_data$YoYoIR1 outcome <- yoyo_mas_data$MAS describe_relationship(predictor, outcome, SESOI_lower = -0.5, SESOI_upper = 0.5)#>#>#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI lower estimator. Returning NAs for upper and lower CIs#> [1] "All values of t are equal to 0.5 \n Cannot calculate confidence intervals"#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI upper estimator. Returning NAs for upper and lower CIs#> [1] "All values of t are equal to 1 \n Cannot calculate confidence intervals"#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI range estimator. Returning NAs for upper and lower CIs#>#> Bootstrap with 2000 resamples and 95% bca confidence intervals. #> #> estimator value lower upper #> SESOI lower -0.500000000 NA NA #> SESOI upper 0.500000000 NA NA #> SESOI range 1.000000000 NA NA #> Intercept 13.159948349 12.795885062 13.533904164 #> Slope 0.001402145 0.001096886 0.001678131 #> RSE 0.218737182 0.181876509 0.270622184 #> Pearson's r 0.857917432 0.712651772 0.927915833 #> R Squared 0.736022320 0.507947744 0.861037856 #> SESOI to RSE 4.571696467 3.695266244 5.501598338 #> PPER 0.970243050 0.925107239 0.989794130