describe_relationship provides numerous descriptive estimators and bootstrap confidence intervals for relationship between paired predictor and outcome groups. describe_relationship function is a "wrapper" for bmbstats function.

describe_relationship(
  predictor,
  outcome,
  SESOI_lower = SESOI_lower_dependent_func,
  SESOI_upper = SESOI_upper_dependent_func,
  estimator_function = relationship_lm_estimators,
  control = model_control(),
  na.rm = FALSE
)

Arguments

predictor

Numeric vector

outcome

Vector

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

estimator_function

Function that takes predictor, outcome, and na.rm parameters and return named numeric vector with parameter estimates. Default is relationship_lm_estimators. User can write their own function with needed estimators for which bootstrap confidence intervals are needed

control

Control object returned from model_control function. Use boot_type, boot_samples, boot_strata to setup bootstrap.

na.rm

Should NAs be removed? Default is FALSE

Examples

data("yoyo_mas_data") predictor <- yoyo_mas_data$YoYoIR1 outcome <- yoyo_mas_data$MAS describe_relationship(predictor, outcome, SESOI_lower = -0.5, SESOI_upper = 0.5)
#> Bootstraping: 2000 resamples
#> Calculating confidence intervals...
#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI lower estimator. Returning NAs for upper and lower CIs
#> [1] "All values of t are equal to 0.5 \n Cannot calculate confidence intervals"
#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI upper estimator. Returning NAs for upper and lower CIs
#> [1] "All values of t are equal to 1 \n Cannot calculate confidence intervals"
#> Warning: boot::boot.ci returned error or NULL when estimating CIs for SESOI range estimator. Returning NAs for upper and lower CIs
#> Done!
#> Bootstrap with 2000 resamples and 95% bca confidence intervals. #> #> estimator value lower upper #> SESOI lower -0.500000000 NA NA #> SESOI upper 0.500000000 NA NA #> SESOI range 1.000000000 NA NA #> Intercept 13.159948349 12.795885062 13.533904164 #> Slope 0.001402145 0.001096886 0.001678131 #> RSE 0.218737182 0.181876509 0.270622184 #> Pearson's r 0.857917432 0.712651772 0.927915833 #> R Squared 0.736022320 0.507947744 0.861037856 #> SESOI to RSE 4.571696467 3.695266244 5.501598338 #> PPER 0.970243050 0.925107239 0.989794130