S3 method for printing cv_model
results
# S3 method for bmbstats_cv_model print(x, ...)
x | Object of class |
---|---|
... | Extra arguments |
data("vertical_jump_data") m1 <- cv_model( `Post-test` ~ `Pre-test` * Group * `Squat 1RM`, vertical_jump_data, control = model_control( cv_repeats = 10, cv_folds = 3, cv_strata = vertical_jump_data$Group ) )#>#>m1#> Training data consists of 8 predictors and 30 observations. Cross-Validation of the model was performed using 10 repeats of 3 folds. #> #> Model performance: #> #> metric training training.pooled testing.pooled mean #> MBE -1.563192e-14 3.884316e-15 0.2311052 0.2311052 #> MAE 8.763836e-01 7.306604e-01 1.4379213 1.4379213 #> RMSE 1.059620e+00 9.166555e-01 1.9037243 1.8547725 #> PPER 7.787868e-01 8.510785e-01 0.5125763 0.5055777 #> SESOI to RMSE 2.543190e+00 2.892834e+00 1.3929184 1.5211796 #> R-squared 9.744091e-01 9.808487e-01 0.9186148 0.9113843 #> MinErr -2.117309e+00 -2.459842e+00 -3.9171978 -2.5194035 #> MaxErr 1.706648e+00 1.902532e+00 9.1259564 3.5829687 #> MaxAbsErr 2.117309e+00 2.459842e+00 9.1259564 3.9383175 #> SD min max #> 0.56371177 -1.0633326 1.2602194 #> 0.25275572 0.9338355 2.0781957 #> 0.43626768 1.1205181 3.2501994 #> 0.08878779 0.2804820 0.7199031 #> 0.32733904 0.7847265 2.3910227 #> 0.06103823 0.6946005 0.9822198 #> 0.91286013 -3.9171978 -0.8861356 #> 1.87116370 0.8756370 9.1259564 #> 1.63899801 2.0690027 9.1259564