This method uses algebraic method assuming normal distribution of the residuals. This is done by using sd rather than RSE from lm model.

cost_MBE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MAE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MSE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_RMSE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_SSE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MinErr(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MaxErr(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MaxAbsErr(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MaxSqErr(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_R_squared(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_SESOItoRMSE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_PPER(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_MHE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

cost_RMHE(
  observed,
  predicted,
  SESOI_lower = 0,
  SESOI_upper = 0,
  negative_weight = 1,
  positive_weight = 1,
  na.rm = FALSE
)

Arguments

observed

Numeric vector

predicted

Numeric vector

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

negative_weight

How should negative residuals be weighted? Default is 1

positive_weight

How should positive residuals be weighted? Default is 1

na.rm

Should NAs be removed? Default is FALSE

Examples

data("yoyo_mas_data") model <- lm(MAS ~ YoYoIR1, yoyo_mas_data) observed <- yoyo_mas_data$MAS predicted <- predict(model) SESOI_lower <- -0.5 SESOI_upper <- 0.5 # Mean Squared Error cost_MSE( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] 0.04465622
# Mean Absolute Error cost_MAE( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] 0.1749008
# Root Mean Squared Error cost_RMSE( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] 0.2113202
# Bias cost_MBE( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] -5.921193e-15
# Sum of Squared Errors cost_SSE( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] 1.339687
# Proportion of Practically Equivalent Residuals cost_PPER( observed = observed, predicted = predicted, SESOI_lower = SESOI_lower, SESOI_upper = SESOI_upper )
#> [1] 0.9728044