Calculates proportion of the estimator bootstrap resample lower/equivalent/higher distribution compared to SESOI band

bootstrap_MBI(bmbstats_object, estimator, SESOI_lower = 0, SESOI_upper = 0)

Arguments

bmbstats_object

Object of class bmbstats

estimator

Name of the estimator from the bmbstats_object

SESOI_lower

Lower smallest effect size of interest threshold

SESOI_upper

Upper smallest effect size of interest threshold

Value

bmbstats_MBI object

Examples

mean_MBI <- bootstrap_MBI( describe_data(rnorm(10, 100, 20)), estimator = "mean", SESOI_lower = 95, SESOI_upper = 105 )
#> Bootstraping: 2000 resamples
#> Calculating confidence intervals...
#> Warning: extreme order statistics used as endpoints
#> Warning: extreme order statistics used as endpoints
#> Warning: boot::boot.ci returned error or NULL when estimating CIs for min estimator. Returning NAs for upper and lower CIs
#> Done!
mean_MBI
#> Magnitude-based inference for the `mean` estimator #> Bootstrap result: mean=98.768, 95% CI [91.44, 105.512] #> SESOI: [95, 105] #> #> Test prob #> lower 0.1390 #> equivalent 0.8225 #> higher 0.0385 #> #> Final inference: Likely equivalent
plot(mean_MBI, control = plot_control(points_jitter = FALSE))
#> Picking joint bandwidth of 0.689